• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The numerical evaluation of crash performance of the pressurized thin-walled tubes

Thumbnail

View/Open

Full Text / Tam Metin (5.055Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Kuleyin, Hamdi
Gümrük, Recep

Metadata

Show full item record

Citation

Kuleyin, H. & Gumruk, R. (2022). The numerical evaluation of crash performance of the pressurized thin-walled tubes. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 44(3), 85. https://doi.org/10.1007/s40430-022-03392-3

Abstract

This paper aims to investigate the energy absorption characteristics of the pressurized thin-walled tubes under axial impact by numerical simulations. The Arbitrary Lagrangian-Eulerian (ALE) model with the Fluid-Structure Interaction (FSI) approach was used, for the numerical simulations, which can simulate the interaction effects between tube wall and compressed air. In this manner, the effects of the parameters such as initial internal pressure, impact velocity, regulator discharge capacity, and regulator discharge set pressure on the energy absorption behavior of pressurized tubes were examined. The results showed that the pressurized thin-walled tubes absorbed higher impact energy than non-pressurized ones, and the amount of absorbed total energy increased with an increase in the initial internal pressure. Also, the total deformation displacement of thin-walled tubes can be reduced by different values of the initial internal pressure in cases of the same impact velocities. With increasing the impact velocity, the absorbed energy by the tube wall increases depending on micro-inertia effects. As a result of this increment, both the absorbed total energy and the efficiency of pressurized air on the energy absorption capacity of pressurized thin-walled tubes improved. Also, the results show that the pressurized tubes can be used as adaptive energy absorbers with controlling the initial internal pressure and regulator set pressure for quasi-static and low-velocity impact loading conditions in cases of quite thin tube-wall thickness.

Source

Journal of the Brazilian Society of Mechanical Sciences and Engineering

Volume

44

Issue

3

URI

https://doi.org/10.1007/s40430-022-03392-3
https://hdl.handle.net/11436/6962

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.