• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Employing U-shaped 3D printed polymer to improve flexural properties of cementitious tailings backfills

Thumbnail

View/Open

Full Text / Tam Metin (23.51Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Qin, Shiwen
Cao, Shuai
Yılmaz, Erol

Metadata

Show full item record

Citation

Qin, S.W., Cao, S. & Yilmaz, E. (2022). Employing U-shaped 3D printed polymer to improve flexural properties of cementitious tailings backfills. Construction and Building Materials, 320, 126296.https://doi.org/10.1016/j.conbuildmat.2021.126296

Abstract

The roof stability of artificial structures constructed by cementitious tailings backfill (CTB) is one of the major aspects in the durability of underhand cut and fill mining method. This is because CTB's failure can threaten worker and equipment safety and create ore dilution. An interesting question is whether 3D printed polymeric lattice (3DPPL) can enhance powerfully CTB's strength characteristics? To explore this topic, diverse 3DPPL shapes (i.e., hexagon, square and rhombus) and material types (i.e., transparent resin TR, nylon NY and ordinary resin OR) were considered. Three-point bending tests on CTB samples were carried out with scanning electron microscopy observations to measure their flexural and microstructural characteristics. The following inferences showed that U-shaped 3DPPL reinforced CTB significantly offered improved flexural strengths when material types were OR and NY. However, material type TR presented a major weakening influence on CTB's flexural strength. For a given CTB recipe, rhombus and OR were selected as the best polymer shape and material type among others. All U-shaped 3DPPL reinforced backfills better flexural deflection values than N-3DPPL reinforced ones. The maximum and minimum reinforcement multiples were 44.9 and 0.9. U-shaped 3DPPL obviously changes CTB's flexural characteristics, from traditional brittle failure to ductile failure. The outcomes of this work can afford a strong source for popularization and implementation of underhand cut-and-fill mining system and the stability control of the backfilling materials.

Source

Construction and Building Materials

Volume

320

URI

https://doi.org/10.1016/j.conbuildmat.2021.126296
https://hdl.handle.net/11436/7110

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [261]
  • Scopus İndeksli Yayınlar Koleksiyonu [6017]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.