• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • TR-Dizin İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • TR-Dizin İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A method to classify steel plate faults based on ensemble learning

Thumbnail

Göster/Aç

Full Text / Tam Metin (1.079Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2022

Yazar

Özkat, Erkan Caner

Üst veri

Tüm öğe kaydını göster

Künye

Özkat, E.C. (2022). A Method to Classify Steel Plate Faults Based on Ensemble Learning. Journal of Materials and Mechatronics:A, 3(2), 240-256. https://doi.org/10.55546/jmm.1161542

Özet

With the industrial revolution 4.0, machine learning methods are widely used in all aspects of manufacturing to perform quality prediction, fault diagnosis, or maintenance. In the steel industry, it is important to precisely detect faults/defects in order to produce high-quality steel plates. However, determining the exact first-principal model between process parameters and mechanical properties is a challenging process. In addition, steel plate defects are detected through manual, costly, and less productive offline inspection in the traditional manufacturing process of steel. Therefore, it is a great necessity to enable the automatic detection of steel plate faults. To this end, this study explores the capabilities of the following three machine learning models Adaboost, Bagging, and Random Forest in detecting steel plate faults. The well-known steel plate failure dataset provided by Communication Sciences Research Centre Semeion was used in this study. The aim of many studies using this dataset is to correctly classify defects in steel plates using traditional machine learning models, ignoring the applicability of the developed models to real-world problems. Manufacturing is a dynamic process with constant adjustments and improvements. For this reason, it is necessary to establish a learning process that determines the best model based on the arrival of new information. Contrary to previous studies on the steel plate failure dataset, this article presents a systematic modelling approach that includes the normalization step in the data preparation stage to reduce the effects of outliers, the feature selection step in the dimension reduction stage to develop a machine learning model with fewer inputs, and hyperparameter optimization step in the model development stage to increase the accuracy of the machine learning model. The performances of the developed machine learning models were compared according to statistical metrics in terms of precision, recall, sensitivity, and accuracy. The results revealed that AdaBoost performed well on this dataset, achieving accuracy scores of 93.15% and 91.90% for the training and test datasets, respectively.

Kaynak

Journal of Materials and Mechatronics:A

Cilt

3

Sayı

2

Bağlantı

https://doi.org/10.55546/jmm.1161542
https://hdl.handle.net/11436/7795

Koleksiyonlar

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • TR-Dizin İndeksli Yayınlar Koleksiyonu [2844]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.