• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Electronically controllable fully floating memcapacitor circuit

Thumbnail

View/Open

Full Text / Tam Metin (922.2Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Gür, Müslüm
Akar, Funda
Orman, Kamil
Babacan, Yunus
Yeşil, Abdullah
Gül, Fatih

Metadata

Show full item record

Citation

Gür, M., Akar, F., Orman, K., Babacan, Y., Yeşil, A. & Gül, F. (2023). Electronically Controllable Fully Floating Memcapacitor Circuit. Circuits Systems and Signal Processing. https://doi.org/10.1007/s00034-023-02448-6

Abstract

Memcapacitor is a type of capacitor but exhibits nonlinear behavior, and its capacitance depends on the past capacitance value. Researchers focused on the memcapacitors and meminductors upon postulation of memristor which is the forth passive fundamental circuit element. Memcapacitor emulator circuits have continuously been designed by researchers since it cannot be found as discrete circuit elements. A number of memcapacitor emulators have been offered in the literature to investigate its usability in CMOS designs. However, the offered designs have some insufficiencies such as grounded restriction, being composed of complex structure, etc. In this study, we designed a simple multioutput operational transconductance amplifier (MO-OTA)-based fully floating and electronically controllable memcapacitor emulator circuit. The circuit is composed of only two MO-OTAs, two analog multipliers, two grounded passive elements, and four transistors. This proposed circuit can also be implemented in VLSI and on breadboard using discrete circuit elements. Performance analyses were completed via using TSMC 0.18 & mu;m parameters. Finally, the obtained results of the proposed fully floating emulator circuit are consistent with the expected memcapacitors behavior. This makes the circuit suitable for ideal memcapacitor emulator.

Source

Circuits Systems and Signal Processing

URI

https://doi.org/10.1007/s00034-023-02448-6
https://hdl.handle.net/11436/8124

Collections

  • MÜF, Elektrik-Elektronik Mühendisliği Bölümü Koleksiyonu [199]
  • Scopus İndeksli Yayınlar Koleksiyonu [6000]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.