• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Curing conditions effect on pore structure, compressive strength and elastic modulus of cementitious tailings backfills

Thumbnail

View/Open

Full Text / Tam Metin (10.16Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Chen, Shun-man
Yılmaz, Erol
Xiang, Zheng-gui
Wang, Yi-ming

Metadata

Show full item record

Citation

Chen, S:M., Yılmaz, E., Xiang, Z.G., & Wang, Y.M. (2023). Curing conditions effect on pore structure, compressive strength and elastic modulus of cementitious tailings backfills. Powder Technology, 422, 118458. https://doi.org/10.1016/j.powtec.2023.118458

Abstract

As a widespread application in underground metal mines, cementitious tailings backfill (CTB) has a significant implication for recycling dangerous process tailings and enhancing the safety of mining voids. The pore structure of CTB that is liable on the features and proportions of tailings and binders is correlated to its mechanical characteristics (i.e., elastic modulus, uniaxial compressive strength). This study deals with the influence of curing conditions such as temperature (20-50 degrees C), stress (0-540 kPa), and time (3-28 days) on mechanical and pore structure characteristics of CTB. Fill samples were prepared in a stable solid dosage and cement/water ratio of 76% and 1/6, respectively, and put into cylindrical molds (D x H: 50 x 100 mm). A new lab instrument with adjustable curing conditions was adopted for fills. A PC-controlled mechanical press and Hg intrusion poros-imetry were applied to assess CTB's strength and pore structure properties. Results suggest that, with advancing curing temperature/stress, the strength and elastic modulus of CTB show a rising trend, while its growth rates show a falling trend. CTB's porosity shows a declining trend, and it exists a good linear correlation between fill's strength and apparent porosity. CTB's strength essentially depends on the volume of medium (1-10 mu m) and micro (0.01-1 mu m) pores. As a result, several practical equations for CTB specimens are established, which consider types of tailings and admixtures.

Source

Powder Technology

Volume

422

URI

https://doi.org/10.1016/j.powtec.2023.118458
https://hdl.handle.net/11436/8158

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [261]
  • Scopus İndeksli Yayınlar Koleksiyonu [6026]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.