• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Characterization of biodiesel based on plastic pyrolysis oil (PPO) and coconut oil: Performance and emission analysis using RSM-ANN approach

Thumbnail

View/Open

Full Text / Tam Metin (6.026Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Afzal, Asif
Roy, Roji George
Koshy, Chacko Preno
Alex, Y.
Abbas, Mohamed
Cüce, Erdem
Razak, R. K. Abdul
Shaik, Saboor
Saleel, C. Ahamed

Metadata

Show full item record

Citation

Afzal, A., Roy, R.G., Koshy, C.P., Alex, Y., Abbas, M., Cüce, E., Razak, R.K.A., Shaik, S. & Saleel, C.A. (2023). Characterization of biodiesel based on plastic pyrolysis oil (PPO) and coconut oil: Performance and emission analysis using RSM-ANN approach. Sustainable Energy Technologies and Assessments, 56, 103046. https://doi.org/10.1016/j.seta.2023.103046

Abstract

The work presents comparative study of the production and characterisation of sustainable biodiesel fuel made from waste plastics and virgin coconut oil. For characterisation, various chemical tests were performed, including Fourier Transform Infrared (FTIR) spectroscopy, Thermogravimetric analysis (TGA), and Gas chromatography-mass spectrometry (GCMS). The emissions and performance of this fuel were investigated to determine whether it could be utilised in diesel engines without modification. RSM (response surface method) was used to design the experiments. ANN (artificial neural network) was used to model the relationship between the input and output parameters. It was seen that, 20 % hybrid blend with diesel showed a better output (33 %) than 10 % and 30 % blend. For 75 % of load, a value of 0.12 % (minimum) CO emission was obtained for the same blend with diesel fuel. Low proportion levels blends (10 %) have less amount of oxygen content, hence reduced in NOx (400 ppm). The ANN and RSM models were found to be fitting correctly with the experimental readings, with R2 ratios varying from 90 % to 93.5 %, respectively. The outcomes demonstrated that RSM and ANN were excellent modelling techniques with good accuracy. In addition, ANN's prediction performance (R2 = 0.9978 for BTE) was somewhat better than RSM's (R2 = 0.960 for BTE).

Source

Sustainable Energy Technologies and Assessments

Volume

56

URI

https://doi.org/10.1016/j.seta.2023.103046
https://hdl.handle.net/11436/8167

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.