• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Accuracy improvement in Ag:a-Si memristive synaptic device-based neural network through Adadelta learning method on handwritten-digit recognition

Thumbnail

View/Open

Full Text / Tam Metin (2.691Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Yılmaz, Yıldıran

Metadata

Show full item record

Citation

Yılmaz, Y. (2023). Accuracy improvement in Ag:a-Si memristive synaptic device-based neural network through Adadelta learning method on handwritten-digit recognition. Neural Computing and Applications. https://doi.org/10.1007/s00521-023-08995-y

Abstract

Traditional computing architecture (Von Neumann) that requires data transfer between the off-chip memory and processor consumes a large amount of energy when running machine learning (ML) models. Memristive synaptic devices are employed to eliminate this inevitable inefficiency in energy while solving cognitive tasks. However, the performances of energy-efficient neuromorphic systems, which are expected to provide promising results, need to be enhanced in terms of accuracy and test error rates for classification applications. Improving accuracy in such ML models depends on the optimal learning parameter changes from a device to algorithm-level optimisation. To do this, this paper considers the Adadelta, an adaptive learning rate technique, to achieve accurate results by reducing the losses and compares the accuracy, test error rates, and energy consumption of stochastic gradient descent (SGD), Adagrad and Adadelta optimisation methods integrated into the Ag:a-Si synaptic device neural network model. The experimental results demonstrated that Adadelta enhanced the accuracy of the hardware-based neural network model by up to 4.32% when compared to the Adagrad method. The Adadelta method achieved the best accuracy rate of 94%, while DGD and SGD provided an accuracy rate of 68.11 and 75.37%, respectively. These results show that it is vital to select a proper optimisation method to enhance performance, particularly the accuracy and test error rates of the neuro-inspired nano-synaptic device-based neural network models.

Source

Neural Computing and Applications

URI

https://doi.org/10.1007/s00521-023-08995-y
https://hdl.handle.net/11436/8353

Collections

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [47]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.