• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Generalization of intuitionistic fuzzy submodules of a module by using triangular norms and conorms and (T,S)-L subrings

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Deniz, Ümit

Metadata

Show full item record

Citation

Deniz, Ü. (2023). Generalization of Intuitionistic Fuzzy Submodules of a Module by Using Triangular Norms and Conorms and (T,S)-L Subrings. Fuzzy Logic and Neural Networks for Hybrid Intelligent System Design (pp.51-67), cham: Springer Nature. https://doi.org/10.1007/978-3-031-22042-5_3

Abstract

This study consists of two parts. In first part; It is built on the definition of Intuitionistic Fuzzy Submodules of a Module. Many researchers have used the definition of Atanassov’s (Fuzzy Sets Syst 20:87–96, [1]) Intuitionistic fuzzy sets definition to move the definitions in classical algebra to intuitionistic fuzzy algebra. Davvaz et al. (Inf Sci 176:1447–1454, [2]) defined the Intuitionistic fuzzy submodules of a module. They used minimum and maximum operations to give that definition. In this study we replace minimum operation with triangular norms and maximum operation with triangular conorms for giving the definition of Intuitionistic (T, S)-fuzzy submodule of a module. By using this definition, we move some definition and theorems in classical algebra to Intuitionistic fuzzy algebra. In the second part It is built on the definition of intuitionistic L-fuzzy rings and ideals. Many researchers have used the definition of Atanassov’s (Fuzzy Sets Syst 20:87–96, [1]) intuitionistic fuzzy sets to move the definitions in classical algebra to intuitionistic fuzzy algebra (Davvaz et al. in Inf Sci 176:1447–1454, [2]; Çuvalcıoğlu et al. in Notes Intuitionistic Fuzzy Sets 20:9–16, [3]; Çuvalcıoğlu and Aykut in NIFS 20:57–61, [4]; Isaac and Pearly in Int J Math Sci Appl 1:1447–1454, [5]). When K. Atannassov gave the definition of intuitionistic fuzzy sets he used the closed interval [0, 1]. Then Meena and Thomas (Int Math Forum 6:2561–2572, [6]) replaced the closed interval [0, 1] with L-lattice. In that study they used ∧ ∧-infimum and ∨-supremum operations to give the intuitionistic L-fuzzy rings and intuitionistic L-fuzzy ideals. In this study we replace ∧-infimum with triangular norms and we replace ∨-supremum with triangular conorms and give the definition of intuitionistic (T,S)-L fuzzy rings and ideals. By using this definitions, we move some definition and theorems in classical algebra to intuitionistic fuzzy algebra.

Source

Studies in Computational Intelligence

Volume

1061

URI

https://doi.org/10.1007/978-3-031-22042-5_3
https://hdl.handle.net/11436/8398

Collections

  • FEF, Matematik Bölümü Koleksiyonu [157]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.