• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • PubMed İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • PubMed İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Evaluation of fracture strength after repair of cervical external resorption cavities with different materials

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Çoban Öksüzer, Merve
Çıkman, Ahter Şanal

Metadata

Show full item record

Citation

Çoban Öksüzer, M., & Şanal Çıkman, A. (2023). Evaluation of Fracture Strength After Repair of Cervical External Resorption Cavities with Different Materials. Journal of endodontics, S0099-2399(23)00652-0. Advance online publication. https://doi.org/10.1016/j.joen.2023.10.007

Abstract

INTRODUCTION The aim was to evaluate the stress distributions on dentin and repair materials caused by static force applied to teeth, with cervical external root resorption (CER) after repair with different materials using finite element analysis (FEA). METHODS This study was performed with the 3D FEA method. Access cavity, root canal cavity dimensions, and supporting tissues other than cementum were modeled in the maxillary central tooth. The CER cavity was created on the labial side of the tooth model. The coronal side of the resorption cavity was restored with composite, and the radicular side with different materials (MTA, Biodentine, BioAggregate, CEM, GIC, and RMGIC). A static force of 300 N was applied to the palatal surface of the crown at an angle of 135° to the long axis of the tooth. The stress distributions in dentin and repair materials were analyzed. RESULTS The highest stress in dentin was seen in the model with unrepaired CER. In the models repaired with MTA, GIC, and RMGIC, von Mises stress values in dentin were greater than for repairs with Biodentine, BioAggregate, and CEM materials. The von Mises stress on the repair materials applied to the root were highest for the BioAggregate material. This was followed by CEM, Biodentine, MTA, RMGIC, and GIC materials, respectively. CONCLUSION The repair of CER in the tooth significantly decreased the stress values in dentin. Biodentine, BioAggregate, and CEM absorbed more force and caused less stress to be transmitted to dentin compared to MTA, GIC, and RMGIC.

Source

Journal of Endodontics

URI

https://doi.org/10.1016/j.joen.2023.10.007
https://hdl.handle.net/11436/8590

Collections

  • DŞHF, Klinik Bilimler Bölümü Koleksiyonu [244]
  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.