• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Best output prediction in OECD railways using DEA in conjunction with machine learning algorithms

Thumbnail

View/Open

Full Text / Tam Metin (794.3Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Çakır, Süleyman

Metadata

Show full item record

Citation

Çakır, S. (2023). Best output prediction in OECD railways using DEA in conjunction with machine learning algorithms. Annals of Operations Research. https://doi.org/10.1007/s10479-023-05668-w

Abstract

Efficiency measurement plays an increasingly important role in the regulation and management of railway organizations. Despite its proven usefulness in efficiency measurement, data envelopment analysis (DEA) lacks predictive capability. In order to benefit from their learning and mapping capabilities, machine learning (ML) algorithms have been used as a complementary method to DEA, recently. However, the majority of the existing ML-DEA studies focused on efficiency estimation while disregarding the prediction of DEA projected inputs/outputs toward better performance. This study proposes a novel framework using the adaptive neuro-fuzzy inference system (ANFIS) and the support vector machines (SVM) models in conjunction with the context-dependent DEA model to predict efficiency scores and the best input/output levels for 37 railway companies of OECD countries. Despite drawing on a small sample size, the proposed DEA-ANFIS and DEA-SVM models successfully predicted the efficiency scores and the best output levels of the organizations via approximating the efficient frontiers.

Source

Annals of Operations Research

URI

https://doi.org/10.1007/s10479-023-05668-w
https://hdl.handle.net/11436/8674

Collections

  • İşletme Bölümü Koleksiyonu [127]
  • Scopus İndeksli Yayınlar Koleksiyonu [5990]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.