• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanical properties of Al-9Si-0.6Mg-0.1Sr alloy processed by successive hot and cold multi-directional forging

Thumbnail

View/Open

Full Text / Tam Metin (9.368Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Karabıyık, Sadun
Alemdağ, Yasin
Atmaca, Mustafa
Pürçek, Gençağa
Hekimoğlu, Ali Paşa

Metadata

Show full item record

Citation

Karabıyık, S., Alemdağ, Y., Atmaca, M., Pürçek, G. & Hekimoğlu, A.P. (2023). Mechanical Properties of Al-9Si-0.6Mg-0.1Sr Alloy Processed By Successive Hot and Cold Multi-directional Forging. JOM. https://doi.org/10.1007/s11837-023-06245-z

Abstract

In this study, the effect of successive hot and cold multi-directional forging (MDF) on the mechanical properties of the Al-9Si-0.6Mg-0.1Sr alloy was explored. The alloy was first homogenized and then forged at 200°C from 3 to 15 passes. After each three passes of hot forging, the samples were then cold forged up to three passes at room temperature. The microstructural examinations were carried out with X-ray diffraction technique and scanning electron microscopy equipped with energy-dispersive spectroscopy while mechanical properties were determined by tensile, compression and hardness tests. The hard particles were fragmented and began to distribute homogeneously into the matrix with increasing pass number of hot MDF. The yield, tensile and compressive strengths of the alloy reached to their maximum values at three passes of hot MDF along with hardness, above which they decreased, while its ductility exhibited a reverse trend. The cold MDF significantly increased the mechanical properties of initially hot MDFed samples. The nine passes in hot MDF were determined as the optimum pass number for obtaining the highest yield and tensile strength after cold MDF. These findings were evaluated according to dislocation strengthening, recrystallization and morphology of hard particles.

Source

JOM

URI

https://doi.org/10.1007/s11837-023-06245-z
https://hdl.handle.net/11436/8676

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.