• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine learning driven optimization and parameter selection of multi-surface HTS Maglev

View/Open

Full Text / Tam Metin (7.005Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Özkat, Erkan Caner
Abdioğlu, Murat
Öztürk, U. Kemal

Metadata

Show full item record

Citation

Özkat, E.C., Andioğlu, M. & Öztürk, U.K. (2024). Machine learning driven optimization and parameter selection of multi-surface HTS Maglev. Physica C: Superconductivity and its Applications, 616, 1354430. https://doi.org/10.1016/j.physc.2023.1354430

Abstract

This research aims to tackle the challenges posed by precise force measurement for high temperature superconducting (HTS) Maglev systems, including mechanical constraints, step motor limitations, and sensor resolutions. For this aim, six machine learning (ML) models namely Support Vector Machine (SVM), Gaussian Process Regression (GPR), Extreme Gradient Boosting (XGB), Long Short-Term Memory (LSTM), Extreme Machine Learning (EML), and Convolutional Neural Network (CNN) were developed to predict levitation force (Fz) and lateral force (Fx) based on process parameters including permanent magnet width (PMW), field cooling height (FCH), the movement in the z-axis (vertical distance), and the movement in the x-axis (lateral distance). Among six ML models, CNN emerged as the most accurate model, demonstrating smaller root mean square deviation (RMSD) without compromising correlation coefficients. Furthermore, an innovative process window approach was introduced to select process parameters that simultaneously meet the minimum value of Fz and maximum value of Fx, named β1 and β2, set at 90 N and 0 N, respectively. Within this window, PMW of 30 mm and z values less than 10 mm were found to be consistent for all FCH and x values. The novelty of this study is to formulate the optimisation problem in HTS Maglev using the developed ML model by addressing two specific objectives one of which focuses on maximizing Fz while ensuring Fx remains within a defined tolerance (β3), representing the minimum allowable ratio of the levitation force to the total force, and the second problem aims to maximize Fz while obtaining zero Fx. The optimum PMW, FCH, x, and z values were obtained at 30 mm, 30 mm, 4 mm and 5 mm, corresponding to Fz and Fx values of 224.2 N and -53.8 N for option 1. As for option 2, the process parameters were obtained as 28.6 mm, 25.9 mm, 0 mm, and 5 mm, corresponding to Fz and Fx values of 194.2 N and 0 N. It was obtained both experimentally and by the optimization that Fz reaches close its maximum as the Fx gains attractive character. Hence, it is expected that the outcomes of this study will significantly benefit the design of HTS Maglev systems and find valuable applications across various transportation engineering projects.

Source

Physica C: Superconductivity and its Applications

Volume

616

URI

https://doi.org/10.1016/j.physc.2023.1354430
https://hdl.handle.net/11436/8697

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.