• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Binary classification with variational quantum circuit

View/Open

Full Text / Tam Metin (744.1Kb)

Access

info:eu-repo/semantics/closedAccess

Date

2023

Author

Kakız, Muhammet Talha
Güler, Erkan
Çavdar, Tuğrul
Şanal, Burcu

Metadata

Show full item record

Citation

Kakız, M.T., Güler, E., Cavdar, T. & Şanal, B. (2023). Binary Classification with Variational Quantum Circuit. 2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023, 2023, 194153. http://doi.org/10.1109/ASYU58738.2023.10296812

Abstract

Quantum Computing (QC) is an emerging paradigm offering fundamentally a new and more effective way of computation based on the properties of quantum mechanics, such as superposition, entanglement, and quantum parallelism. The intersection of QC and Machine Learning (ML) fields has given rise to a new research area, Quantum Machine Learning (QML). With the computational power of quantum computers, it proposes using quantum computers to process classical data for learning. Therefore, QML can be an efficient means of classification for computationally intensive tasks. In this paper, we perform an experimental binary classification task with our three qubit Ansatz/Variational Quantum Circuit (VQC). The dataset used in this study, Maternal Health Risk Data Set (MHRD), is publicly available and collected from different hospitals and clinics by means of Internet of Things (IoT) systems. We use amplitude embedding to encode feature vector to the state of qubits after preprocessing and normalization of the data. The operations of cost value calculation and parameter tuning are carried out in a classical way. We have tested our proposal with PennyLane library, and the experimental results show that the proposed VQC classifies the data with 92% accuracy.

Source

2023 Innovations in Intelligent Systems and Applications Conference, ASYU 2023

Volume

2023

URI

http://doi.org/10.1109/ASYU58738.2023.10296812
https://hdl.handle.net/11436/8723

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • Teknik Bilimler Meslek Yüksekokulu Koleksiyonu [199]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.