Long-term investigation of microplastic abundance in Squalius species in Turkish inland waters
Citation
Gedik, K., Mutlu, T., Eryaşar, A. R., Bayçelebi, E., & Turan, D. (2024). Long-term investigation of microplastic abundance in Squalius species in Turkish inland waters. Environmental pollution (Barking, Essex : 1987), 343, 123278. https://doi.org/10.1016/j.envpol.2023.123278Abstract
Examining the enduring alterations in microplastic (MP) concentrations within fish in inland waters is of utmost importance in understanding the historical trajectory of plastic waste and formulating consequential predictions regarding upcoming pollution levels. This study includes the collection of fish samples from 22 different river basins in Türkiye and all Squalius species distributed in Türkiye, covering the years 2004–2018, and examined the presence of MP in museum specimens' gastrointestinal tracts (GITs). 331 specimens were examined, and microplastic was observed in 20.8% (69). A mean value of 0.27 ± 0.19 MP per individual was observed, resulting in a cumulative score of 91 MP. Most observed MPs were composed of fiber, representing 79.1% of the total. The polymer types identified were mostly polyethylene (PE) at 38.5% and polyethylene terephthalate (PET) at 29.7%. The black color was prominent among MPs, and MP length ranged between 101 and 4963 μm. The analysis revealed no statistically significant difference in the mean MP values across different years and basins. There is no substantial correlation between the abundance of MP and the sizes of fish, population density, or quantities of plastic production. The data indicate that MP has persistently acted as a contaminant in freshwater ecosystems over an extended period. It is projected that the laundering of synthetic textiles serves as the primary contributor to MP contamination in freshwater bodies. Our results offer significant baseline data on the pervasive issue of MP pollution in the freshwater environment. These findings enable us to gain profound insights into the current state of MP contamination in fish residing in lotic systems while empowering us to make accurate predictions about its future trajectory.