• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Free vibration and bending analysis of porous bi-directional FGM sandwich shell using a TSDT p-version finite element method

View/Open

Tam Metin / Full Text (2.648Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Lakhdar, Zeddoune
Chorfi, Sidi Mohammed
Belalia, Sid Ahmed
Khedher, Khaled Mohamed
Alluqmani, Ayed Eid
Tounsi, Adbelouahed
Yaylacı, Murat

Metadata

Show full item record

Citation

Lakhdar, Z., Chorfi, S.M., ; Belalia, S.A., Khedher, K.M., ; Alluqmani, A.E., Tounsi, A. & Yaylacı, M. (2024). Free vibration and bending analysis of porous bi-directional FGM sandwich shell using a TSDT p-version finite element method. Acta Mechanica. https://doi.org/10.1007/s00707-024-03909-y

Abstract

Compared to the first-order shear deformation theory and other classical shell theories, the higher-order shear theory is deemed more accurate due to its superior ability to capture transverse shear effects, especially vital for precision in modeling thicker, doubly curved shell panels. Additionally, the third-order shear deformation theory (TSDT) is acknowledged for its computational efficiency compared to the 3D solution striking a balance between result precision and computational efficiency. This paper explores the static bending and free vibration analysis of a porous bi-directional functionally graded doubly curved sandwich shell. For the first time, a combination of TSDT theory with the p-version finite element method is applied, demonstrated for the analysis of bi-directional functionally graded doubly curved sandwich shell. In the initial phase, the mathematical formulation has been meticulously derived. Four models of sandwich FGM distributions, taking into account the porosity effect and comprising a blend of two ceramic materials and a metallic material, have been thoroughly explored. Subsequently, the study evaluates the effectiveness and accuracy of the formulation implemented in FORTRAN CODE through benchmark results, showcasing its adaptability for different shell panel geometries by adjusting the values of the radius of curvature. The latter part of the research delves into new findings related to bi-directional functionally graded porous sandwich FGM shell panels, investigating the effects of gradient indexes and porosity distribution on their behavior.

Source

Acta Mechanica

URI

https://doi.org/10.1007/s00707-024-03909-y
https://hdl.handle.net/11436/8924

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [261]
  • Scopus İndeksli Yayınlar Koleksiyonu [6011]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.