• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading

View/Open

Tam Metin / Full Text (2.703Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Li, Jiajian
Cao, Shuai
Yılmaz, Erol

Metadata

Show full item record

Citation

Li, J.J., Cao, S. & Yılmaz, E. (2024). Reinforcing effects of polypropylene on energy absorption and fracturing of cement-based tailings backfill under impact loading. International Journal of Minerals, Metallurgy and Materials , 31(4), 650-664. https://doi.org/10.1007/s12613-023-2806-3

Abstract

Polypropylene (PP) fiber-reinforced cement-based tailings backfill (FRCTB) is a green compound material with superior crack resistance and has good prospects for application in underground mining. However, FRCTB exhibits susceptibility to dynamic events, such as impact ground pressure and blast vibrations. This paper investigates the energy and crack distribution behavior of FRCTB under dynamic impact, considering the height/diameter (H/D) effect. Split Hopkinson pressure bar, industrial computed tomography scan, and scanning electron microscopy (SEM) experiments were carried out on six types of FRCTB. Laboratory outcomes confirmed fiber aggregation at the bottom of specimens. When H/D was less than 0.8, the proportion of PP fibers distributed along the theta angle direction of 80 degrees-90 degrees increased. For the total energy, all samples presented similar energy absorption, reflectance, and transmittance. However, a rise in H/D may cause a rise in the energy absorption rate of FRCTB during the peak phase. A positive correlation existed between the average strain rate and absorbed energy per unit volume. The increase in H/D resulted in a decreased crack volume fraction of FRCTB. When the H/D was greater than or equal to 0.7, the maximum crack volume fraction of FRCTB was observed close to the incidence plane. Radial cracks were present only in the FRCTB with an H/D ratio of 0.5. Samples with H/D ratios of 0.5 and 0.6 showed similar distributions of weakly and heavily damaged areas. PP fibers can limit the emergence and expansion of cracks by influencing their path. SEM observations revealed considerable differences in the bonding strengths between fibers and the FRCTB. Fibers that adhered particularly well to the substrate were attracted together with the hydration products adhering to surfaces. These results show that FRCTB is promising as a sustainable and green backfill for determining the design properties of mining with backfill.

Source

International Journal of Minerals, Metallurgy and Materials

Volume

31

Issue

4

URI

https://doi.org/10.1007/s12613-023-2806-3
https://hdl.handle.net/11436/9036

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.