• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Predicting mechanical properties in geopolymer mortars, including novel precursor combinations, through XGBoost method

View/Open

Tam Metin / Full Text (3.643Mb)

Access

info:eu-repo/semantics/openAccess

Date

2024

Author

Yılmaz, Yıldıran
Çakmak, Talip
Kurt, Zafer
Ustabaş, İlker

Metadata

Show full item record

Citation

Yilmaz, Y., Cakmak, T., Kurt, Z., & Ustabas, I. (2024). Predicting Mechanical Properties in Geopolymer Mortars, Including Novel Precursor Combinations, Through XGBoost Method. Arabian Journal for Science and Engineering. https://doi.org/10.1007/s13369-024-09179-z

Abstract

Concrete is the most widely used material in the building industry due to its affordability, durability, and strength. However, considering carbon emissions, it is believed that concrete will be replaced by geopolymers in the future. As numerous parameters significantly affect the strength of geopolymers, the performance of potential algorithms for strength prediction needs to be evaluated for different binders to select an appropriate algorithm. This study employs machine learning approaches to provide the best prediction method for the flexural strength and compressive strength of geopolymers. A new dataset containing 533 compressive strength and 533 flexural strength values of geopolymers with different binders such as waste glass (GW), obsidian (OB), and fly ash was created. The best prediction solution, with R2 = 0.981 for compressive strength and R2 = 0.898 for flexural strength, was obtained from the extreme gradient boosting (XGBoost) algorithm. Additionally, several other machine learning models were employed, including linear regression, k-nearest neighbors, deep neural network, and random forest, with corresponding determination coefficient (R2) values of 0.763, 0.804, 0.93, and 0.96, respectively. These models were trained and evaluated using a dataset encompassing features such as binder types, age, and heat, to forecast the mechanical properties of geopolymers. Among these models, XGBoost demonstrated the highest R2 value, indicating superior performance in predicting both compressive and flexural strengths. The findings of this study provide valuable insights into the selection of appropriate machine learning algorithms for predicting mechanical properties in geopolymers, thus contributing to advancements in sustainable construction materials.

Source

Arabian Journal for Science and Engineering

URI

https://doi.org/10.1007/s13369-024-09179-z
https://hdl.handle.net/11436/9106

Collections

  • Bilgisayar Mühendisliği Bölümü Koleksiyonu [47]
  • İnşaat Mühendisliği Bölümü Koleksiyonu [260]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.