• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine-learning-based modeling of saturated flow boiling in pin-fin micro heat sinks with expanding flow passages

View/Open

Tam Metin / Full Text (9.694Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Markal, Burak
Karabacak, Yunus Emre
Evcimen, Alperen

Metadata

Show full item record

Citation

Markal, B., Karabacak, Y. E., & Evcimen, A. (2024). Machine-learning-based modeling of saturated flow boiling in pin-fin micro heat sinks with expanding flow passages. International Communications in Heat and Mass Transfer, 158, 107870. https://doi.org/10.1016/j.icheatmasstransfer.2024.107870

Abstract

For high potential flow-boiling-based thermal management systems, to better understand the underlying flow physics and to present an effective predictive approach have critical importance. Different from the existing literature, this study, for the first time, takes the machine learning (ML) algorithms into consideration for flow boiling in expanding type micro-pin-fin heat sinks (ETMPFHS). A new database including saturated flow boiling data in ETMPFHS is obtained for various operational conditions. Mass flux (G = 150, 210, 270 and 330 kg m−2 s−1), inlet temperature (Ti = 40, 49, 58, 67 and 76 °C) and effective heat flux (approximately, qeff″= 241 to 460 kW m−2) are the variable parameters. In this study, advanced ML algorithms including Support Vector Machine (SVM), Artificial Neural Network (ANN), Regression Trees (RT) and Linear Regression (LR) are used. It is concluded that, for flow boiling in ETMPFHS, the ANN emerges as the most effective model for prediction of htp, ΔT, and ΔP, followed by SVM, while RT and LR present poorer results in terms of predictive accuracy and reliability. Trends of predictions of both the ANN and SVM nearly overlap the experimental data; while both the RT and LR show different trends against the experimental results.

Source

International Communications in Heat and Mass Transfer

Volume

158

URI

https://doi.org/10.1016/j.icheatmasstransfer.2024.107870
https://hdl.handle.net/11436/9246

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [337]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.