• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Exploring microstructure and mechanical features of coupled cementitious tail-sand concrete by partial replacement of tungsten tailings

View/Open

Tam Metin / Full Text (14.79Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2024

Author

Jiang, Meilin
Cao, Shuai
Yılmaz, Erol

Metadata

Show full item record

Citation

Jiang, M., Cao, S., & Yilmaz, E. (2024). Exploring microstructure and mechanical features of coupled cementitious tail-sand concrete by partial replacement of tungsten tailings. Process Safety and Environmental Protection. https://doi.org/10.1016/j.psep.2024.08.100

Abstract

Tailings storage is not only harmful to the environment, but also poses a great challenge to mine safety production. We consider whether coarse-grained tailings can replace standard sand in concrete to rationalize tailings’ valorization/consumption. Hence, this paper aims practicability of employing tungsten tailings to prepare shotcrete for roadway support and to explore the impact of tailings replacement (TR) rate on strength features and fine structural characteristics of coupled cemented tailings-sand concrete (CCTSC). The tailings weight replacement rate was set at 0 %-100 % with a gradient interval of 20 % in order to carry out the macro-mechanical strength and micro-mechanisms of action studies of CCTSC. Results illustrate that uniaxial compressive strength (UCS) of CCTSCs takes a linear distribution link with tailings’ replacement rate. When TR is 0 % and 100 %, the corresponding UCS of CCTSC is 4.86 MPa and 9.63 MPa, respectively, representing an increase of 98.1 %. A mixture of tensile and tensile-shear damage mainly characterizes the damage modes of CCTSC. The hydration materials of CCTSC are ettringite (AFt) and calcium silicate hydrate (CSH) gel. Hydration products gradually transitioned from Aft to CSH with increasing TR. The conclusions of the present investigation will afford data support for preparation of shotcrete support constituents for tungsten mine tailings, and its practical implementation will also have a major impact on subsequent use of tailings resources as well as low-cost green and smart mining of underground mines.

Source

Process Safety and Environmental Protection

URI

https://doi.org/10.1016/j.psep.2024.08.100
https://hdl.handle.net/11436/9350

Collections

  • İnşaat Mühendisliği Bölümü Koleksiyonu [261]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.