• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Radiologic severity index can be used to predict mortality risk in patients with COVID-19

Göster/Aç

Tam Metin / Full Text (279.1Kb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2024

Yazar

Sahutoğlu, Elif
Kabak, Mehmet
Çil, Barış
Atay, Kadri
Peker, Ahmet
Güler, Şükran
Ölçen, Merhamet
Tahtabaşi, Mehmet
Kara, Bilge Yılmaz
Eldeş, Tuğba
Şahin, Ahmet
Esmer, Fatih
Kara, Ekrem
Sahutoğlu, Tuncay

Üst veri

Tüm öğe kaydını göster

Künye

Sahutoğlu, E., Kabak, M., Çi̇l, B., Atay, K., Peker, A., Güler, Ş., Ölçen, M., Tahtabaşi, M., Yilmaz Kara, B., Eldes, T., Şahi̇n, A., Esmer, F., Kara, E., & Sahutoğlu, T. (2024). Radiologic Severity Index Can Be Used To Predict Mortality Risk In Patients With Covid-19. Tuberk Toraks, 72(4), 280–287. https://doi.org/10.5578/tt.202404994

Özet

Introduction: Pneumonia is a common symptom of coronavirus disease-2019 (COVID-19), and this study aimed to determine how analyzing initial thoracic computerized-tomography (CT) scans using semi-quantitative methods could be used to predict the outcomes for hospitalized patients. Materials and Methods: This study looked at previously collected data from adult patients who were hospitalized with a positive test for severe acute respiratory syndrome coronavirus-2 and had CT scans of their thorax at the time of presentation. The CT scans were evaluated for the extent of lung involvement using a semi-quantitative scoring system ranging from 0 to 72. The researchers then analyzed whether CT score could be used to predict outcomes. Results: The study included 124 patients, 55 being females, with a mean age of 46.13 years and an average duration of hospitalization of 11.69 days. Twelve patients (9.6%) died within an average of 17.2 days. The non-surviving patients were significantly older, had more underlying health conditions, and higher CT scores than the surviving patients. After taking age and comorbidities into account, each increase in CT score was associated with a 1.048 increase in the risk of mortality. CT score had a good ability to predict mortality, with an area under the curve of 0.857 and a sensitivity of 75% and specificity of 85.7% at a cut-off point of 25.5. Conclusion: Radiologic severity index, which is calculated using a semi-quantitative CT scoring system, can be used to predict the mortality of COVID-19 patients at the time of their initial hospitalization.

Kaynak

Tuberkuloz ve Toraks

Cilt

72

Sayı

4

Bağlantı

https://doi.org/10.5578/tt.202404994
https://hdl.handle.net/11436/9910

Koleksiyonlar

  • PubMed İndeksli Yayınlar Koleksiyonu [2443]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • TF, Dahili Tıp Bilimleri Bölümü Koleksiyonu [1573]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Yönerge | Rehber | İletişim |

DSpace@RTEÜ

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Rehber|| Yönerge || Kütüphane || Recep Tayyip Erdoğan Üniversitesi || OAI-PMH ||

Recep Tayyip Erdoğan Üniversitesi, Rize, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Recep Tayyip Erdoğan Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.