Basit öğe kaydını göster

dc.contributor.authorTopal, Muhammed Emin
dc.contributor.authorŞahin, Birol
dc.contributor.authorVela, Serkan
dc.date.accessioned2025-08-10T16:42:52Z
dc.date.available2025-08-10T16:42:52Z
dc.date.issued2025en_US
dc.identifier.citationTopal, M. E., Şahin, B., & Vela, S., (2025). Analysis of the Drying Kinetics of Freeze-Dried Persimmon at Different Cabin Pressures using Artificial Neural Network Method, 84(7), 760-769. https://doi.org/10.56042/jsir.v84i7.12878en_US
dc.identifier.issn0022-4456
dc.identifier.issn0975-1084
dc.identifier.urihttps://doi.org/10.56042/jsir.v84i7.12878
dc.identifier.urihttps://hdl.handle.net/11436/10841
dc.description.abstractThe main objective of this study is to freeze dry persimmon (Diospyros kaki) at three different cabin pressures (0.008 mbar, 0.010 mbar and 0.012 mbar) and product thicknesses (3 mm, 5 mm, and 7 mm) and, examine the drying kinetics, and assess the accuracy of artificial neural networks (ANN) in forecasting critical drying parameters, including Moisture Content (MC), Drying Rate (DR), and dimensionless Mass loss Ratio (MR). In this study, a feed forward ANN with a Multilayer Perceptron (MLP) architecture was designed to simulate and predict the freeze-drying behavior of persimmons. The ANN modeling, developed using MATLAB software while accounting for different product thicknesses and cabin pressures, demonstrated a test performance value of 0.99781 and an overall performance value of 0.99896. The drying time for persimmons ranged from 1080 minutes (3 mm, 0.008 mbar) to 2160 minutes (7 mm, 0.012 mbar). It was observed that reducing cabin pressure and product thickness resulted in decreased drying time. The highest drying rate (0.213%/min) was achieved with a 3 mm thick product at 0.008 mbar cabin pressure. Depending on the product thickness and cabin pressure, the Alibas model (3 mm, 0.008 mbar), the Improved Midilli-Kucuk model (3 mm, 0.010 mbar; 5 mm, 0.008 mbar; 5 mm, 0.012 mbar; and 7 mm, 0.010 mbar), and the Balbay & Sahin model (3 mm, 0.012 mbar; 5 mm, 0.010 mbar; 7 mm, 0.008 mbar; and 7 mm, 0.012 mbar) were found to be the most effective in describing the drying process of persimmons. These results suggest that ANNs are capable of effectively modeling the freeze-drying process of persimmons.en_US
dc.language.isoengen_US
dc.publisherNatl Inst Scienceen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectDrying behavioren_US
dc.subjectDrying kineticsen_US
dc.subjectFreeze-dryingen_US
dc.subjectPersimmonen_US
dc.titleAnalysis of the drying kinetics of freeze-dried persimmon at different cabin pressures using artificial neural network methoden_US
dc.typearticleen_US
dc.contributor.departmentRTEÜ, Mühendislik ve Mimarlık Fakültesi, Makine Mühendisliği Bölümüen_US
dc.contributor.institutionauthorTopal, Muhammed Emin
dc.contributor.institutionauthorŞahin, Birol
dc.identifier.doi10.56042/jsir.v84i7.12878en_US
dc.identifier.volume84en_US
dc.identifier.issue7en_US
dc.identifier.startpage760en_US
dc.identifier.endpage769en_US
dc.relation.journalJournal of Scientific & Industrial Researchen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster