• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing mechanical and tribological properties of Ni3Al-15vol%TiC composite by high current pulsed electron beam irradiation

Thumbnail

View/Open

Full Text / Tam Metin (26.99Mb)

Access

info:eu-repo/semantics/closedAccess

Date

2022

Author

Demirtaş, Muhammet
Ivanov, Konstantin V.
Pürçek, Gençağa
Yanar, Harun

Metadata

Show full item record

Citation

Demirtas, M., Ivanov, K.V., Purcek, G. & Yanar, H. (2022). Enhancing mechanical and tribological properties of Ni3Al-15vol%TiC composite by high current pulsed electron beam irradiation. Journal of Alloys and Compounds, 898, 162860. https://doi.org/10.1016/j.jallcom.2021.162860

Abstract

Effects of high current pulsed electron beam irradiation (HCPEBI) on the surface microstructure, mechanical properties, room and high temperature tribological behavior of the Ni3Al-15vol%TiC composite were investigated. The HCPEBI process refines the TiC particles down to nano scale and distributes them homogeneously throughout the modified layer. It also decreases grain size of the Ni3Al down to 400 nm. Grain refinement and homogeneous distribution of the TiC nanoparticles by irradiation process increase surface hardness from 538 HV0.025 to about 728 HV0.025. The HCPEBI process increases also the wear resistance of Ni3Al-15vol%TiC composite at both room temperature and elevated temperature of 600 degrees C due to the increasing hardness and roughening the surface of the sample. Adhesive wear was found to be the dominant wear mechanism for both as-received and irradiated samples at room temperature beside with the delamination. At the elevated temperature of 600 degrees C, oxidative wear and delamination of the oxide layers occur as the main wear mechanisms in the as-received sample. In the irradiated sample, on the other hand, wear starts with the abrasive wear with micro-cutting of surface hills of irradiated sample, and continues with oxidative and delamination wear mechanisms. (C) 2021 Elsevier B.V. All rights reserved.

Source

Journal of Alloys and Compounds

Volume

898

URI

https://doi.org/10.1016/j.jallcom.2021.162860
https://hdl.handle.net/11436/6983

Collections

  • Makine Mühendisliği Bölümü Koleksiyonu [337]
  • Scopus İndeksli Yayınlar Koleksiyonu [6023]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.