• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
  •   RTEÜ
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • Scopus İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Contemporary evaporative cooling system with indirect interaction in construction implementations: A theoretical exploration

View/Open

Tam Metin / Full Text (5.512Mb)

Access

info:eu-repo/semantics/openAccess

Date

2024

Author

Cüce, Pınar Mert
Cüce, Erdem
Riffat, Saffa

Metadata

Show full item record

Citation

Cüce, P.M., Cüce, E. & Riffat, S. (2024). Contemporary Evaporative Cooling System with Indirect Interaction in Construction Implementations: A Theoretical Exploration. Buildings, 14(4), 994. https://doi.org/10.3390/buildings14040994

Abstract

The construction sector, including in developed countries, plays a notable part in the overall energy consumption worldwide, being responsible for 40% of it. In addition to this, heating, ventilating and air-conditioning (HVAC) systems constitute the largest share in this sector, accounting for 40% of energy usage in construction and 16% globally. To address this, stringent rules and performance measures are essential to reduce energy consumption. This study focuses on mathematical optimisation modelling to enhance the performance of indirect-contact evaporative cooling systems (ICESs), a topic with a significant gap in the literature. This modelling is highly comprehensive, covering various aspects: (1) analysing the impact of the water-spraying unit (WSU) size, working air (WA) velocity and hydraulic diameter (Dh) on the evaporated water vapour (EWV) amount; (2) evaluating temperature and humidity distribution for a range of temperatures without considering humidity at the outlet of the WSU, (3) presenting theoretical calculations of outdoor temperature (Tout) and humidity with a constant WSU size and air mass flow rate (MFR), (4) examining the combined effect of the WA MFR and relative humidity (ϕ) on Tout and (5) investigating how Tout influences the indoor environment’s humidity. The study incorporates an extensive optimisation analysis. The findings indicate that the model could contribute to the development of future low-carbon houses, considering factors such as the impact of Tout on indoor ϕ, the importance of low air velocity for achieving a low air temperature, the positive effects of Dh on outdoor air and the necessity of a WSU with a size of at least 8 m for adiabatic saturation.

Source

Buildings

Volume

14

Issue

4

URI

https://doi.org/10.3390/buildings14040994
https://hdl.handle.net/11436/9025

Collections

  • Enerji Sistemleri Mühendisliği Bölümü Koleksiyonu [117]
  • Makine Mühendisliği Bölümü Koleksiyonu [329]
  • Mimarlık Bölümü Koleksiyonu [82]
  • Scopus İndeksli Yayınlar Koleksiyonu [5931]
  • WoS İndeksli Yayınlar Koleksiyonu [5260]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Instruction | Guide | Contact |

DSpace@RTEÜ

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Guide|| Instruction || Library || Recep Tayyip Erdoğan University || OAI-PMH ||

Recep Tayyip Erdoğan University, Rize, Turkey
If you find any errors in content, please contact:

Creative Commons License
Recep Tayyip Erdoğan University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@RTEÜ:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.